Principles of Data Mining


F04c1ce277c16d45aefed64bb6c3a91c

0 reviews
Written by
QR code for Principles of Data Mining
Published
Apr, 2017

About Principles of Data Mining

Principles of Data Mining, Second Edition (Undergraduate Topics in Computer Science) by Max Bramer
English | 25 Feb. 2013 | ISBN: 1447148835 | 456 Pages | PDF (True) | 2.62 MB
Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas.
Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. Principles of Data Mining explains and explores the principal techniques of Data Mining: for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed worked examples, with a focus on algorithms rather than mathematical formalism. It is written for readers without a strong background in mathematics or statistics, and any formulae used are explained in detail. This second edition has been expanded to include additional chapters on using frequent pattern trees for Association Rule Mining, comparing classifiers, ensemble classification and dealing with very large volumes of data. Principles of Data Mining aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Suitable as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.

BY NOW from this link http://www.amazon.com/gp/reader/Principles of Data Mining

Recommended Books